Locating Personal vDisk with PowerShell script

Dell vRanger is a backup solution for VMware which I’ve been using for a while to backup a customer’s ESXi environment. It’s generally OK, however the vRanger backup configuration wizard does not allow you to specifically exclude Citrix MCS base image disks which cannot themselves be backed up (.delta disk file types) – instead opting to force you to define the disks to exclude based upon Hard disk 1, Hard disk 2 names which apply to the whole job identically for each VM.

In this example I DO want to backup the pvDisk but DO NOT want to backup the other two disks which are deemed unnecessary. The issue which I’ve got with this approach is that sometimes (and I don’t quite understand why!) the virtual desktops added to the catalog sometimes use Hard disk 3 for the user’s pvDisk and others use Hard disk 2.

Perhaps this is just a timing issue with vCenter but nevertheless I needed to figure out a simple way of easily searching a group of VMs and selecting those which use Hard disk 2, and 3 and create separate backup jobs which exclude the non-backup targets i.e. the delta disk (non-persistent independent) and identity disk (persistent independent).

See below the script which I ended up with after a bit of tinkering. It makes an assumption that the identity disk is less than 1GB in size and that your pvDisk is greater than 1GB (otherwise you may not see anything returned):

#Connect-VIServer -Server vcentersrv1.domain.internal
$VMfilter = 'Win7-XD-C*'
$XenDesktopVMs = Get-VM -Name $VMfilter
Write-Host 'Listing pvDisks names for selected VMs:'foreach ($vm in $XenDesktopVMs) {$hdd=Get-HardDisk -VM $vm | Where {$_.Persistence -eq "Persistent"}foreach ($diskin$hdd | `
where-object {$_.CapacityGB -ge 1}) {Write-Host $vm.Name $Disk.Name '=' $disk.CapacityGB }}

Repointing vCenter Server to external PSC on load balanced FQDN fails

I have been  planning a migration project for a customer for a while which involves moving from an embedded SSO instance on vCenter 5.5 to an external Platform Services Controller instance on 6.5. Suffice to say, plenty of ‘how to’ guides exist, alongside the documentation from VMware – however, there is a generally scant outline of what steps to take when ‘repointing your vCenter to the new load balanced PSC virtual IP. The topic of this post is what happens when you follow the available load balancing documentation and your VMware Update Manager service fails to start afterwards.

I’ll include the reference articles up front, in case these are the ones which you might also have referred to:

Reference articles:

Configuring HA PSC load balancing on Citrix NetScaler – VMware KB article

Repoint vCenter Server to Another External Platform Services Controller in the Same Domain – VMware KB article

The repoint command:

At the step where you are reminded to repoint your vCenter instances at the new load balanced VIP address you’ll need to use the command:

cmsso-util repoint --repoint-psc psc-ha-vip.sbcpureconsult.internal

However, if you’ve followed the steps precisely, you’re likely to run into the following output when the repoint script attempts to restart the Update Manager service:

What happens:

Validating Provided Configuration …
Validation Completed Successfully.
Executing repointing steps. This will take few minutes to complete.
Please wait …
Stopping all the services …
All services stopped.
Starting all the services …

[… truncated …]

Stderr = Service-control failed. Error Failed to start vmon services.vmon-cli RC=2, stderr=Failed to start updatemgr services. Error: Service crashed while starting

Failed to start all the services. Error {
“resolution”: null,
“detail”: [
{
“args”: [
“Stderr: Service-control failed. Error Failed to start vmon services.vmon-cli RC=2, stderr=Failed to start updatemgr services. Error: Service crashed while starting\n\n”
],
“id”: “install.ciscommon.command.errinvoke”,
“localized”: “An error occurred while invoking external command : ‘Stderr: Service-control failed. Error Failed to start vmon services.vmon-cli RC=2, stderr=Failed to start updatemgr services. Error: Service crashed while starting\n\n'”,
“translatable”: “An error occurred while invoking external command : ‘%(0)s'”
}
],
“componentKey”: null,
“problemId”: null
}

Following this issue you might reboot or attempt to start all services directly on the vCenter appliance afterwards and receive:

service-control --start --all

Service-control failed. Error Failed to start vmon services.vmon-cli RC=2, stderr=Failed to start updatemgr services. Error: Service crashed while starting

This again is fairly unhelpful output and doesn’t provide any assistance as to the cause of the issue. After much investigation, it turns out that the list of TCP port numbers which the load balancing configuration details are not complete, causing the service startup to fail. Because we’re not running any other applications on the PSC hosts it’s possible to simplify the configuration on NetScaler by using wildcard port services for each server.

NetScaler configuration commands (specific to PSC load balancing):

The following alternative configuration ensures that any PSC service requested by your vCenter Server (or other solutions) will remain persistently connected on a ‘per host’ basis for up to 1440 minutes which is the default lifetime of a vCenter Web Client session. This is different to VMware’s documented approach which load balances each service individually, but obviously misses out some crucial port.

add server hosso01.sbcpureconsult.internal 192.168.0.117
add server hosso02.sbcpureconsult.internal 192.168.0.116

add service hosso01.sbcpureconsult.internal_TCP_ANY hosso01.sbcpureconsult.internal TCP * -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO

add service hosso02.sbcpureconsult.internal_TCP_ANY hosso02.sbcpureconsult.internal TCP * -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO

add lb vserver lb_hosso01_02_TCP_ANY TCP 192.168.0.122 * -persistenceType SOURCEIP -timeout 1440 -cltTimeout 9000

bind lb vserver lb_hosso01_02_TCP_ANY hosso01.sbcpureconsult.internal_TCP_ANY

bind lb vserver lb_hosso01_02_TCP_ANY hosso02.sbcpureconsult.internal_TCP_ANY

Once this configuration is put in place you’ll find that the vCenter Update Manager service will start correctly and your repoint will be successful.

Edit: Following the above configuration steps to get past the installation issue, I’ve since improved the list of ports that are load balanced by NetScaler to extend the list that VMware published for vCenter in their docs page. By enhancing the original series of ports I think we can resolve the initial issue without resorting to IP based wildcard load balancing.

I’ve included the full configuration below for reference:

Thanks for reading!

If you find this useful drop me a message via my contact page.

add server hosso01.sbcpureconsult.internal 192.168.0.117
add server hosso02.sbcpureconsult.internal 192.168.0.116
add service hosso01_TCP80 hosso01.sbcpureconsult.internal TCP 80 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP88 hosso01.sbcpureconsult.internal TCP 88 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP389 hosso01.sbcpureconsult.internal TCP 389 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP443 hosso01.sbcpureconsult.internal TCP 443 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP514 hosso01.sbcpureconsult.internal TCP 514 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP636 hosso01.sbcpureconsult.internal TCP 636 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP1514 hosso01.sbcpureconsult.internal TCP 1514 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP2012 hosso01.sbcpureconsult.internal TCP 2012 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP2014 hosso01.sbcpureconsult.internal TCP 2014 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP2015 hosso01.sbcpureconsult.internal TCP 2015 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP2020 hosso01.sbcpureconsult.internal TCP 2020 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP5480 hosso01.sbcpureconsult.internal TCP 5480 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso01_TCP7444 hosso01.sbcpureconsult.internal TCP 7444 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP80 hosso02.sbcpureconsult.internal TCP 80 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP88 hosso02.sbcpureconsult.internal TCP 88 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP389 hosso02.sbcpureconsult.internal TCP 389 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP443 hosso02.sbcpureconsult.internal TCP 443 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP514 hosso02.sbcpureconsult.internal TCP 514 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP636 hosso02.sbcpureconsult.internal TCP 636 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP1514 hosso02.sbcpureconsult.internal TCP 1514 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP2012 hosso02.sbcpureconsult.internal TCP 2012 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP2014 hosso02.sbcpureconsult.internal TCP 2014 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP2015 hosso02.sbcpureconsult.internal TCP 2015 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP2020 hosso02.sbcpureconsult.internal TCP 2020 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP5480 hosso02.sbcpureconsult.internal TCP 5480 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add service hosso02_TCP7444 hosso02.sbcpureconsult.internal TCP 7444 -gslb NONE -maxClient 0 -maxReq 0 -cip DISABLED -usip NO -useproxyport YES -sp OFF -cltTimeout 9000 -svrTimeout 9000 -CKA NO -TCPB NO -CMP NO
add lb vserver lb_hosso01_02_80 TCP 192.168.0.122 80 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_88 TCP 192.168.0.122 88 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_389 TCP 192.168.0.122 389 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_443 TCP 192.168.0.122 443 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_514 TCP 192.168.0.122 514 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_636 TCP 192.168.0.122 636 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_1514 TCP 192.168.0.122 1514 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_2012 TCP 192.168.0.122 2012 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_2014 TCP 192.168.0.122 2014 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_2015 TCP 192.168.0.122 2015 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_2020 TCP 192.168.0.122 2020 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_5480 TCP 192.168.0.122 5480 -timeout 1440 -cltTimeout 9000
add lb vserver lb_hosso01_02_7444 TCP 192.168.0.122 7444 -timeout 1440 -cltTimeout 9000
bind lb vserver lb_hosso01_02_80 hosso01_TCP80
bind lb vserver lb_hosso01_02_80 hosso02_TCP80
bind lb vserver lb_hosso01_02_88 hosso01_TCP88
bind lb vserver lb_hosso01_02_88 hosso02_TCP88
bind lb vserver lb_hosso01_02_389 hosso01_TCP389
bind lb vserver lb_hosso01_02_389 hosso02_TCP389
bind lb vserver lb_hosso01_02_443 hosso01_TCP443
bind lb vserver lb_hosso01_02_443 hosso02_TCP443
bind lb vserver lb_hosso01_02_514 hosso01_TCP514
bind lb vserver lb_hosso01_02_514 hosso02_TCP514
bind lb vserver lb_hosso01_02_636 hosso01_TCP636
bind lb vserver lb_hosso01_02_636 hosso02_TCP636
bind lb vserver lb_hosso01_02_1514 hosso01_TCP1514
bind lb vserver lb_hosso01_02_1514 hosso02_TCP1514
bind lb vserver lb_hosso01_02_2012 hosso01_TCP2012
bind lb vserver lb_hosso01_02_2012 hosso02_TCP2012
bind lb vserver lb_hosso01_02_2014 hosso01_TCP2014
bind lb vserver lb_hosso01_02_2014 hosso02_TCP2014
bind lb vserver lb_hosso01_02_2015 hosso01_TCP2015
bind lb vserver lb_hosso01_02_2015 hosso02_TCP2015
bind lb vserver lb_hosso01_02_2020 hosso01_TCP2020
bind lb vserver lb_hosso01_02_2020 hosso02_TCP2020
bind lb vserver lb_hosso01_02_5480 hosso01_TCP5480
bind lb vserver lb_hosso01_02_5480 hosso02_TCP5480
bind lb vserver lb_hosso01_02_7444 hosso01_TCP7444
bind lb vserver lb_hosso01_02_7444 hosso02_TCP7444
add lb group pg_hosso_01_02 -persistenceType SOURCEIP -timeout 1440
bind lb group pg_hosso_01_02 lb_hosso01_02_80
bind lb group pg_hosso_01_02 lb_hosso01_02_88
bind lb group pg_hosso_01_02 lb_hosso01_02_389
bind lb group pg_hosso_01_02 lb_hosso01_02_443
bind lb group pg_hosso_01_02 lb_hosso01_02_514
bind lb group pg_hosso_01_02 lb_hosso01_02_636
bind lb group pg_hosso_01_02 lb_hosso01_02_1514
bind lb group pg_hosso_01_02 lb_hosso01_02_2012
bind lb group pg_hosso_01_02 lb_hosso01_02_2014
bind lb group pg_hosso_01_02 lb_hosso01_02_2015
bind lb group pg_hosso_01_02 lb_hosso01_02_2020
bind lb group pg_hosso_01_02 lb_hosso01_02_5480
bind lb group pg_hosso_01_02 lb_hosso01_02_7444
set lb group pg_hosso_01_02 -persistenceType SOURCEIP -timeout 1440

XenApp 7.x open published apps session report PowerShell script

Whilst there’s many amazing things being introduced by Citrix recently (in the XenApp/XenDesktop space) I do sometimes feel that Citrix Studio can be somewhat limited in comparison to previous admin tools.

I would say one of the common things that administrators and consultants need to know on a daily basis is how many instances of each published app are being run within a Citrix environment. I was a little perplexed at first why this wasn’t easily available through Citrix Director without making connections directly to the database through an OData connection, but I guess in the end they decided that it simply wasn’t relevant .

So I’ve been working on a PowerShell script to give me a very simple view of how an environment’s application usage stacks up, and from there on in I can decide whether everything’s running fine or dig a little deeper.

The first drafts of the script originally required me to manually specify the delivery group(s) against which it would be run, but in this example I’m using a multi-select list box to allow me to choose more than one (just hold down the CTRL key). However,  since each execution of the script only gives me a point-in-time view this example script will refresh every 60 seconds until the maximum interval of one day has passed.

The sort order is currently defined based upon the total number of application instances running, ordered by largest to least, so bear this in mind when selecting multiple delivery groups as the resulting view may not be what you’re looking for.

if ((Get-PSSnapin -Name "Citrix.Broker.Admin.V2" -ErrorAction SilentlyContinue) -eq $Null){Add-PSSnapin Citrix.Broker.Admin.V2}
$selectmachines = @()
$count = 1440 # Script will run until 1 day has passed, updating every 60 seconds
$selectdg = Get-BrokerDesktopGroup | Select-Object -Property Name, UID | Sort-Object -Property UID | Out-GridView -OutputMode Multiple -Title 'Select one or more delivery groups to display active sessions'
foreach ($i in $selectdg) {
$selectmachines+=Get-BrokerMachine -DesktopGroupUid $i.Uid | Select-Object MachineName -ExpandProperty MachineName
}
Do {
clear #Reset the screen contents before redisplaying the connection count
Get-BrokerApplicationInstance -Filter 'MachineName -in $selectmachines'| group-Object -Property ApplicationName | sort-object -property Count -Descending | Format-Table -AutoSize -Property Count,Name
$count--
Start-sleep -Seconds 60
} while ($count -ne 0)

 

Why Citrix and Microsoft’s new servicing models now make sense

OK, so I wasted a little bit of time. I know.. it’s a shame when that happens, but it’s even worse to make the same mistake twice! So please read on in case you head down the same road without keeping your eyes peeled for the pitfalls. So what’s the take home message of this post? Microsoft and Citrix now need us (no actually, require us) to do as every professional should always do, and plan our release schedules properly!

This post discusses an issue I experienced installing Citrix XenDesktop VDA 7.15 on Windows 10 Fall Creator’s Update – receiving error 1603 when the Citrix Diagnostic Facility component failed to install. If you’re short on time, skip to the end for a series of helpful links – otherwise, bear with me and I’ll take you on a short journey to grudging mindset shift!

I’d wasted a morning patching a Citrix base image from Windows 10 build 1703 to 1709 Creator’s Fall update because we were looking to create a clean desktop for some developers to test their software releases on. But try as I might, the Citrix 7.15 VDA installer wouldn’t complete and always terminated with error 1603 –  the Citrix Diagnostic Facility (CDF) service had failed to install. After investigating the logs though it wasn’t clear why, other than a permissions failure on C:\Windows\assembly\tmp – and even checking those showed little evidence for the cause of the problem.

But here goes, after a little bit more digging I discovered that the latest Citrix VDA does NOT support the latest semi-annual ‘targeted’ release of Windows 10 (1709). See issue #1 on Citrix blog post.

Could I believe it? No, not at first really – how could a desktop OS release made generally available on 17th October 2017 not be compatible with the latest Citrix VDA which has also been chosen recently as the most recent Long Term Service Release version? Surely this new XenDesktop LTSR release would have been coordinated with Microsoft’s own release schedule, with release candidates being shared well in advance so that both vendor’s would have had a chance to test their interaction together?

Apparently not – and therein lies the message. You cannot expect that each vendor is attempting to align their minor and major servicing schedules with each other! ..Assuming.. that the latest Citrix VDA will work with the latest release of Windows is no longer going to float, and that’s why we all need to fully commit to the “test, test and test again” approach.

In fact, the logic was established a long time ago.  The last LTSR release of XenDesktop (7.6) did not support Windows 10 claiming this as a ‘notable exclusion’ despite the fact that early Windows 10 versions had been around for some time.

Notable Exclusions: These are components or features that are just not well suited for the extended lifecycle typically because this is newer technology that we plan on making significant enhancements to over time.  This is where Windows 10 fell when we originally launched 7.6 LTSR.

Citrix then later added retrospective support for Windows 10 by encouraging the use of VDA 7.9 in conjunction with the XenDesktop 7.6 LTSR release when it appeared that this combination worked well. However hope for the future compatibility was even made clear at this time with the following statement being added to the end of that post.

Finally, we want to note that Citrix is targeting to announce a new LTSR version in 2017 adding full LTSR benefits for the Windows 10 platform. However, this current announcement makes it easier for you to jump on Windows 10 desktop virtualization today while still maintaining all the benefits of being LTSR compliant.

And whilst it is indeed true that XenDesktop 7.15 LTSR release fully supports Windows 10 current branch/semi annual channel, it seems that only a simple statement on ‘requiring VDA 7.9 or later’ was made as long as you are happy to stick to the ‘Current release’ path:

Note about Windows 10: Regular support for Windows 10 is available through the Current Release path. Windows 10 does not get the full set of 7.15 LTSR benefits. For deployments that include Windows 10 machines, Citrix recommends that you use the Current Release Version 7.9 or later of the VDA for Desktop OS and of Provisioning Services.

A separate article entitled Windows 10 Compatibility with Citrix XenDesktop makes this clearer,

  • VDA: Although Semi-Annual Channel Targeted releases are intended for pilot trials, Citrix will provide limited support (configuration only) for VDA installations on Windows 10 Semi-Annual Channel Targeted releases, starting from version 1709 forward.

..and goes on further to say that ‘targeted’ releases such as Windows 10 Fall Creator’s Update are not guaranteed to be compatible:

While the Desktop OS VDA is expected to install and work on Windows 10 Semi-Annual Channel Targeted versions, Citrix does not guarantee proper functionality with these builds.

So there – it’s now clear. The LTSR releases, even the most recent, were never intended to deliver the latest compatibility with Microsoft’s own servicing schedule. It just happens in this case that VDA 7.15 is the most recent VDA available currently and for some reason Citrix also chose to adopt this as the version included in the latest LTSR release.

If you’re intending to use LTSR versions and maintain full compatibility with Windows 10 it seems that the only sensible way forward is to fall back on the most recent Semi-Annual Channel release (build 1703) and wait for the next LTSR cumulative release that adds support for the previously circulated Win10 ‘targeted’ version after all of the wrinkles have been ironed out. This is very well explained at the end of the linked article above, which simply states that you can’t be sure of support for specific Windows 10 versions unless you match them with the approved VDA for that Semi-annual channel release. Anything newer just might not work.

  • Windows 10 Creator’s Update (Version 1703) – use VDA 7.9/7.15 for LTSR support
  • Windows 10 Fall Creator’s Update (Version 1709) – Not supported!

So what’s the moral of the story, after all? Citrix and Microsoft have taken the stance to deliver frequent releases for those who are happy to trail-blaze and hotfix, depending upon their current release and semi-annual targeted releases respectively. But if you want to rely upon well-tested and proven operating system and VDA platforms – which are likely to survive the test of time (without high levels of maintenance and unpredictable results) then stick to the aligned Citrix LTSR and Windows Semi-Annual channel versions and plan your releases several months in advance. Anything else, and you could be left scratching your head for a short while until the penny drops!

Update: Since writing this post I’ve become aware of a clear summary of the current situation documented within Carl Stalhood’s excellent VDA 7.15 installation notes under point #7. Citrix have stated that they plan to provide retrospective support for VDA 7.15 on Windows 10 Version 1709 under two scenarios:

  • A new patch (now released) on Nov 14th 2017 (KB4051314) will provide the ability to update an existing Windows installation and existing VDA to Windows 10 version 1709
  • A new patch to be released via the Microsoft Update Catalogue in November Week 4 will allow you to do a fresh new VDA install on a clean Windows 10 version 1709.

NB This is a first draft of this post with minor edits. If you believe that anything included here is erroneous or misleading please get in contact/drop me a line so that I can clean it up. Thanks for reading!

Useful references:
Windows 10 Compatibility with Citrix XenDesktop
Windows 10 Fall Creators Update (v1709) – Citrix Known Issues
Windows 10 Creators Update (v1703) – Citrix Known Issues
XenApp and XenDesktop 7.15 LTSR
Adding Windows 10 Compatibility to XenApp and XenDesktop 7.6 LTSR
FAQ: XenApp, XenDesktop, and XenServer Servicing Options (LTSR)
Windows 10 update history
https://blogs.technet.microsoft.com/windowsitpro/2017/07/27/waas-simplified-and-aligned/
https://blogs.windows.com/windowsexperience/2017/10/17/get-windows-10-fall-creators-update/

Listing Citrix session count by application using PowerShell

You may have found that Citrix Director offers fairly limited set of information regarding the number of users which are connected to each XenApp host, and there was no simple way (until I think XA7.9 update) to view the published app session count for each application.Here’s a useful PowerShell snippet which should help you out if you didn’t upgrade yet. It’s a concatenation of several commands which basically list off all of the sessions and then group and sort them into a convenient list.You’ll need to open PowerShell on a Citrix delivery controller and then type:

Add-PSsnapin Citrix*

Following which, you should enter the following command:

Get-BrokerApplicationInstance | group-Object -Property ApplicationName | sort-object -property Count -Descending | Format-Table -AutoSize -Property Count,Name

The output generated should be as follows:

You can of course tailor the verb Get-BrokerApplicationInstance to select a smaller subset of sessions on which to group and sort using:

Get-BrokerApplicationInstance -MachineName DOM\\HOXENAPP01

Which will simply tell you the distribution of published application sessions for an individual XenApp host. Hope this helps!

Updating password field names with multiple NetScaler Gateway virtual servers

Imagine a situation where you want to change your NetScaler Gateway’s logon page to include alternative prompts for the Username, Password 1 and Password 2 fields and need to update the language specific .XML files. This has been documented before, and isn’t too hard to figure out once you’ve found a couple of ‘How to’ guides on the Internet. However I have since come across a limitation in trying to apply the NetScaler’s new ‘Custom’ design template to several different NetScaler Gateway virtual servers at the same time, because essentially whilst you can define your own custom design it is automatically applied to all instances of the virtual server residing on the NetScaler – so if you define custom fields then you’ve defined them for all.

This may not be a problem for some people, but what if the secondary authentication mechanism is an RSA token for one site, and a VASCO token for another? How do you go about configuring alternative sets of custom logon fields? Most of the answers are already out there in one form or another, but I lacked one simple beginning to end description of the solution (I tried several alternate options including rewrite policies which didn’t quite work before I opted for this approach):

Background (NetScaler 10.5.x build)The Citrix NetScaler VPN default logon page has already been modified in order to ask for ‘AD password’ and ‘VASCO token’ values instead of Password 1: and Password 2:, as detailed in http://support.citrix.com/article/CTX126206

This was achieved by editing index.html and login.js files in /var/netscaler/gui/vpn of the NS as per the Citrix article above.

In addition, the resources path which holds the language based .XML files in /var/netscaler/gui/vpn/resources has been backed up into /var/customisations so that the /nsconfig/rc.netscaler file can copy them back into the correct location if they get overwritten or lost following reboot.

Contents of rc.netscaler file

cp /var/customisations/login.js.mod /netscaler/ns_gui/vpn/login.jscp /var/customisations/en.xml.mod /netscaler/ns_gui/vpn/resources/en.xmlcp /var/customisations/de.xml.mod /netscaler/ns_gui/vpn/resources/de.xmlcp /var/customisations/es.xml.mod /netscaler/ns_gui/vpn/resources/es.xmlcp /var/customisations/fr.xml.mod /netscaler/ns_gui/vpn/resources/fr.xml

However, because these values apply globally there is an issue if a second NetScaler virtual server does not use a VASCO token as a secondary authentication mechanism. This causes the normal ‘Password’ entry box to be displayed as ‘VASCO token’. The only suitable workaround for this is to create a parallel set of logon files for each additional NS gateway virtual server and use a responder policy on the NS to redirect incoming requests for the index.html page of the VPN to a different file.

In the following examples, I have created a second configuration for a ‘Training NetScaler’, abbreviated to TrainingNS throughout. In summary,

Create separate login.js and index.html files for the alternate parameters, create a new /resources folder specifically for those and edit references within those before defining a responder action & policy in NS:

  1. Copy existing login.js to loginTrainingNS.js
  2. Copy existing index.html to indexTrainingNS.html
  3. Create a new folder called /netscaler/ns_gui/vpn/resourcesTrainingNS and give it the same owner/group permissions as the /netscaler/ns_gui/vpn/resources folder (use WinSCP to define the permissions, right click Properties on the file)
  4. Copy all of the .XML files from /netscaler/ns_gui/vpn/resources into the new folder
  5. Edit the indexTraining.html file and make the following change to reflect the new location of the resource files

var Resources = new ResourceManager("resourcesTrainingNS/{lang}", "logon");

Edit the indexTrainingNS.html file and make the modifications described in CTX1262067.

Edit the individual .XML files in the new folder as per the explanation in CTX126206

AD Password:
TwoFactorAuth Password:

(this second option will not be used if only a primary authentication mechanism is defined)

When all of the file changes are complete, using https://support.citrix.com/article/CTX123736 as a guide, define the responder action and policy on the NS:

  • Create a responder action using the URL: “https://trainingns.lstraining.ads/vpn/indexTrainingNS.html”
  • Create a responder policy using the expression: HTTP.REQ.HOSTNAME.EQ(“trainingns.lstraining.ads”) && HTTP.REQ.URL.CONTAINS(“index.html”)Bind the policy to the global defaults

Now when you launch the URL for the Training NetScaler it will redirect to the custom index.html file and load a separate logon.js and .xml resource files so that the logon box will be name differently.

In addition, the following article hints at an alternative resolution if the Responder feature cannot be licensed: http://www.carlstalhood.com/netscaler-gateway-virtual-server/#customize